Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present the multiwavelength and environmental properties of 37 variability-selected active galactic nuclei (AGNs), including 30 low-luminosity AGNs (LLAGNs), using a high cadence time-domain survey (All-Sky Automated Survey for SuperNovae) from a spectroscopic sample of 1218 nearby bright galaxies. We find that high-cadence time-domain surveys uniquely select LLAGNs that do not necessarily satisfy other AGN selection methods, such as X-ray, mid-IR, or BPT methods. In our sample, 3% of them pass the mid-infrared color based AGN selection, 18% pass the X-ray luminosity based AGN selection, and 60% pass the BPT selection. This result is supported by two other LLAGN samples from high-cadence time-domain surveys of the Transiting Exoplanet Survey Satellite and Palomar Transient Factory, suggesting that the variability selection method from well-sampled light curves can find AGNs that may not be discovered otherwise. These AGNs can have moderate to small variability amplitudes from the accretion disk, but many of them lack strong corona, emission lines from the central engine, or accretion power to dominate the mid-IR emission. The X-ray spectra of a subsample of bright sources are consistent with a power-law model. Upon inspecting the environments of our sample, we find that LLAGNs are more common in denser environments of galaxy clusters in contrast with the trend established in the literature for luminous AGNs at low redshifts, which is broadly consistent with our analysis result for luminous AGNs limited by a smaller sample size. This contrast in environmental properties between LLAGN and luminous AGNs suggests that LLAGNs may have different trigger mechanisms.more » « lessFree, publicly-accessible full text available July 2, 2026
- 
            Context.Variability is a ubiquitous feature of active galactic nuclei (AGNs), and the characterisation of this variability is crucial to constraining its physical mechanism and proper applications in AGN studies. The advent of all-sky and high-cadence optical surveys allows more accurate measurements of AGN variability down to short timescales as well as direct comparisons with X-ray variability from the same sample of sources. Aims.We aim to analyse the optical power spectral density (PSD) of AGNs with measured X-ray PSDs. Methods.We used light curves from the All-Sky Automated Survey for SuperNovae (ASAS-SN) and the Transiting Exoplanet Survey Satellite (TESS) and used the Lomb-Scargle periodogram to obtain PSDs. The joint optical PSD is measured over up to six orders of magnitude in frequency space on timescales of minutes to a decade. We fitted either a damped random walk (DRW) or a broken power law (BPL) model to constrain the PSD model and break frequency. Results.We find a set of break frequencies (≲10−2day−1) from DRW and BPL fits that generally confirm previously reported correlations between break frequencies and the black hole mass. In addition, we find a second set of break frequencies at higher frequencies (> 10−2day−1). We observe a potential weak correlation between the high-frequency breaks with the X-ray break frequencies and the black hole mass. We further explored the dependence of the correlations on other AGN parameters, finding that adding X-ray, optical, or bolometric luminosity as the third correlation parameter can substantially improve the correlation significances. The newly identified high-frequency optical breaks can constrain different aspects of the physics of AGNs.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Abstract We present an optical variability analysis and comparison of the samples of Seyfert 1 (Sy1) and Seyfert 2 (Sy2) galaxies, selected from the Swift 9 month BAT catalog, using the light curves from Transiting Exoplanet Survey Satellite (TESS) and All-Sky Automated Survey for SuperNovae (ASAS-SN). We measured the normalized excess variance of TESS and ASAS-SN light curves for each target and performed a Kolmogorov–Smirnov test between the two samples, where our results showed significant differences. This is consistent with predictions from the unification model, where Seyfert 2s are obscured by the larger scale dust torus and their variability is suppressed. This variability difference is independent of the luminosity, Eddington ratio, or black hole mass, further supporting geometrical unification models. We searched the dependence of the normalized excess variance of Sy1s on absolute magnitudes, Eddington ratio, and black hole mass, where our results are consistent with relations found in the literature. Finally, a small subsample of changing-look (CL) active galactic nuclei (AGNs) that transitioned during the time frame of the ASAS-SN light curves, with their variability amplitudes changing according to the classification, have larger variability as type 1s and smaller as 2s. The change of variability amplitudes can be used to better pinpoint when the type transition occurred. The consistency trend of the variability amplitude differences between Sy1s and Sy2s and between CL AGNs in 1 or 2 stages suggests that variability can be a key factor in shedding light on the CL AGN or the dichotomy between Sy1 or Sy2 populations.more » « lessFree, publicly-accessible full text available May 22, 2026
- 
            Abstract Low luminosity active galactic nuclei (LLAGN) probe accretion physics in the low Eddington regime can provide additional clues about galaxy evolution. AGN variability is ubiquitous and thus provides a reliable tool for finding AGN. We analyze the All-Sky Automated Survey for SuperNovae light curves of 1218 galaxies withg< 14 mag and Sloan Digital Sky Survey spectra in search of AGN. We find 37 objects that are both variable and have AGN-like structure functions, which is about 3% of the sample. The majority of the variability selected AGN are LLAGN with Eddington ratios ranging from 10−4to 10−2. We thus estimate the fraction of LLAGN in the population of galaxies as 2% down to a median Eddington ratio of 2 × 10−3. Combining the BPT line ratio AGN diagnostics and the broad-line AGN, up to ∼60% of the AGN candidates are confirmed spectroscopically. The BPT diagnostics also classified 10%–30% of the candidates as star-forming galaxies rather than AGN.more » « less
- 
            null (Ed.)ABSTRACT We present photometry, spectra, and spectropolarimetry of supernova (SN) 2014ab, obtained through ∼200 d after peak brightness. SN 2014ab was a luminous Type IIn SN (MV < −19.14 mag) discovered after peak brightness near the nucleus of its host galaxy, VV 306c. Pre-discovery upper limits constrain the time of explosion to within 200 d prior to discovery. While SN 2014ab declined by ∼1 mag over the course of our observations, the observed spectrum remained remarkably unchanged. Spectra exhibit an asymmetric emission-line profile with a consistently stronger blueshifted component, suggesting the presence of dust or a lack of symmetry between the far side and near side of the SN. The Pa β emission line shows a profile very similar to that of H α, implying that this stronger blueshifted component is caused either through obscuration by large dust grains, occultation by optically thick material, or a lack of symmetry between the far side and near side of the interaction region. Despite these asymmetric line profiles, our spectropolarimetric data show that SN 2014ab has little detected polarization after accounting for the interstellar polarization. We are likely seeing emission from a photosphere that has only small deviation from circular symmetry in the plane normal to our line of sight, but with either large-grain dust or significant asymmetry in the density of circumstellar material or SN ejecta along our line of sight. We suggest that SN 2014ab and SN 2010jl (as well as other SNe IIn) may be events with similar geometry viewed from different directions.more » « less
- 
            Abstract We have modeled the velocity-resolved reverberation response of the Hβbroad emission line in nine Seyfert 1 galaxies from the Lick Active Galactic Nucleus (AGN) Monitoring Project 2016 sample, drawing inferences on the geometry and structure of the low-ionization broad-line region (BLR) and the mass of the central supermassive black hole. Overall, we find that the HβBLR is generally a thick disk viewed at low to moderate inclination angles. We combine our sample with prior studies and investigate line-profile shape dependence, such as , on BLR structure and kinematics and search for any BLR luminosity-dependent trends. We find marginal evidence for an anticorrelation between the profile shape of the broad Hβemission line and the Eddington ratio, when using the rms spectrum. However, we do not find any luminosity-dependent trends, and conclude that AGNs have diverse BLR structure and kinematics, consistent with the hypothesis of transient AGN/BLR conditions rather than systematic trends.more » « less
- 
            Abstract We carried out spectroscopic monitoring of 21 low-redshift Seyfert 1 galaxies using the Kast double spectrograph on the 3 m Shane telescope at Lick Observatory from 2016 April to 2017 May. Targeting active galactic nuclei (AGNs) with luminosities ofλLλ(5100 Å) ≈ 1044erg s−1and predicted Hβlags of ∼20–30 days or black hole masses of 107–108.5M⊙, our campaign probes luminosity-dependent trends in broad-line region (BLR) structure and dynamics as well as to improve calibrations for single-epoch estimates of quasar black hole masses. Here we present the first results from the campaign, including Hβemission-line light curves, integrated Hβlag times (8–30 days) measured againstV-band continuum light curves, velocity-resolved reverberation lags, line widths of the broad Hβcomponents, and virial black hole mass estimates (107.1–108.1M⊙). Our results add significantly to the number of existing velocity-resolved lag measurements and reveal a diversity of BLR gas kinematics at moderately high AGN luminosities. AGN continuum luminosity appears not to be correlated with the type of kinematics that its BLR gas may exhibit. Follow-up direct modeling of this data set will elucidate the detailed kinematics and provide robust dynamical black hole masses for several objects in this sample.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
